# RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2016

SECOND YEAR [BATCH 2015-18] STATISTICS [General]

Date : 21/12/2016 Time : 11 am - 1 pm

# Paper : III

Full Marks : 50

## [Use a separate Answer Book for each Group]

### <u>Group – A</u>

### Answer any two questions:

1. If a random sample of size *n* is selected from the finite population which consists of the integers 1,2, ..., *N*, show that  $V(\overline{X}) = \frac{(N+1)(N-n)}{12n}$ , where  $X_i$  is the number selected in the *i*<sup>th</sup> draw and  $\overline{X}$  is the mean. [Assume SRSWOR and you can also use the standard results of SRSWOR]

- 2. If  $X_1, X_2, \dots, X_n$  constitute a random sample from a normal population with  $\mu = 0$ , show that  $\sum_{i=1}^n X_i^2 / n$  is an unbiased estimator of  $\sigma^2$ . [ $\sigma^2$  is the variance of the normal population].
- 3. If  $V_1, V_2, \dots, V_n$  and  $W_1, W_2, \dots, W_n$  are independent random samples of size *n* from normal populations with the means  $\mu_1 = (\alpha + \beta)$  &  $\mu_2 = (\alpha \beta)$  respectively and common variance  $\sigma^2 = 1$  i.e.  $V_i \sim N(\alpha + \beta, 1)$  &  $W_i \sim N(\alpha \beta, 1) \forall i = 1, 2, \dots, n$ . Find the maximum likelihood estimators for  $\alpha \& \beta$  [You can use the standard MLEs for the normal distribution parameters, without deriving these].
- 4. Explain what do you mean by the power of a test? Define the probabilities of type I & type II errors. Which error is more severe? Can we minimize both? If yes how and if not why?

#### Answer any two questions:

- 5. a) Consider a N(μ, σ<sup>2</sup>) population where μ & σ<sup>2</sup> are unknown. We are to test the null hypothesis H<sub>0</sub>: μ = μ<sub>0</sub> against the alternatives H<sub>1A</sub>: μ > μ<sub>0</sub>; H<sub>1B</sub>: μ < μ<sub>0</sub>; H<sub>1C</sub>: μ ≠ μ<sub>0</sub> on the basis of the random sample (X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub>) of size n, construct critical regions (of size α) corresponding to the three alternatives.
  - b) A random sample  $X_1, X_2, \dots, X_n$  is drawn from an infinite population with unknown mean  $\mu$ & unknown variance  $\sigma^2$ . Show that the sample variance  $S^2 = \frac{1}{n} \sum (X_i - \overline{X})^2$  is not an unbiased estimator of  $\sigma^2$ . Find the unbiased estimator of  $\sigma^2$ . [5]
- 6. In statistical inference, explain the application of Pearsonian statistics for testing
  - Goodness of fit
  - Independence of two attributes

[2×5]

[5]

[5]

[5]

[5]

[10]

[2×10]

[5]

7. (i) Given  $P[F_{10,12} > 2.753] = 0.05 = P[F_{1,12} > 4.747]$ . Find  $P[F_{12,10} > \frac{1}{2.753}]$  and  $P[-\sqrt{4.747} > t_{12} < \sqrt{4.747}]$ .

[The letters F and t denote respectively F-distribution & t-distribution. The integers affixed to F & t are the relevant degrees of freedom].

- (ii) Let  $X_1$  and  $X_2$  constitute a random sample from a normal population with  $\sigma^2 = 1$ . If the null hypothesis  $\mu = \mu_0$  is to be rejected in favour of the alternative hypothesis  $\mu = \mu_1 > \mu_0$  when  $\overline{X} > \mu_0$ , what is the size of the critical region?
- 8. Random samples of sizes n<sub>1</sub> & n<sub>2</sub> are drawn from two independent normal populations N(μ<sub>1</sub>, σ<sub>1</sub><sup>2</sup>)
  & N(μ<sub>2</sub>, σ<sub>2</sub><sup>2</sup>). Explain how do you come up with the 100 (1-α)% confidence interval for (μ<sub>1</sub> μ<sub>2</sub>), considering the two cases when (i) σ<sub>1</sub><sup>2</sup> & σ<sub>2</sub><sup>2</sup> are known (ii) σ<sub>1</sub><sup>2</sup> & σ<sub>2</sub><sup>2</sup> are unknown. [4+6]

## <u>Group – B</u>

| Ans | swer <u>any two</u> questions:                                                                              | [2×5]  |
|-----|-------------------------------------------------------------------------------------------------------------|--------|
| 9.  | Briefly explain the steps to construct price index number of two different time periods.                    | [5]    |
| 10. | Explain uses of index number. Clarify the concept 'Purchasing power of money'.                              | [5]    |
| 11. | Distinguish between seasonal variation and cyclical variations.                                             | [5]    |
| 12. | Discuss the moving average method for determining trend in a time series. What are its merits and demerits? | [5]    |
| Ans | swer <u>any one</u> question:                                                                               | [1×10] |
| 12  | Find the trend value for the year 1006 by fitting a second degree polynomial to the following date:         | [10]   |

13. Find the trend value for the year 1996 by fitting a second degree polynomial to the following data: [10]

| Year:           | 1993 | 1994 | 1995 | 1996 | 1997 |
|-----------------|------|------|------|------|------|
| Sales (,000 Rs) | 16   | 18   | 19   | 20   | 24   |

14. What do you mean by C.L.I.N? Describe the different steps in construction of CLIN for jute workers of West Bengal.

[10]

[5]

[5]

